Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent
نویسندگان
چکیده
In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\text{in } \mathbb{R}^N \setminus\Omega }\] where \(\Omega \subset \mathbb{R}^N\) is bounded domain with Lipschitz boundary and\( (-\Delta_p)^s\) the fractional p-Laplacian operator.We combine some variational techniques perturbation method to show existenceof multiple solutions.
منابع مشابه
Multiplicity Results for Equations with Subcritical Hardy-sobolev Exponent and Singularities on a Half-space
We prove some multiplicity results for a class of singular quasilinear elliptic problems involving the critical Hardy-Sobolev exponent and singularities on a half-space.
متن کاملMultiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملOn the quasilinear elliptic problem with a critical Hardy–Sobolev exponent and a Hardy term
In the present paper, a quasilinear elliptic problem with a critical Sobolev exponent and a Hardy-type term is considered. By means of a variational method, the existence of nontrivial solutions for the problem is obtained. The result depends crucially on the parameters p, t, s, λ and μ. c © 2007 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33
متن کاملCritical Hardy–Sobolev Inequalities
Abstract We consider Hardy inequalities in IRn, n ≥ 3, with best constant that involve either distance to the boundary or distance to a surface of co-dimension k < n, and we show that they can still be improved by adding a multiple of a whole range of critical norms that at the extreme case become precisely the critical Sobolev norm. Résumé Nous étudions des inegalités de Hardy dans IRn, n ≥ 3,...
متن کاملp-Laplacian problems with critical Sobolev exponent
We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Differential Equations
سال: 2023
ISSN: ['1072-6691']
DOI: https://doi.org/10.58997/ejde.2023.10